RunPod LLM
Get started with RunPod LLMs.
Overview
This guide covers how to use the LangChain RunPod LLM class to interact with text generation models hosted on RunPod Serverless.
Setup
- Install the package:
pip install -qU langchain-runpod - Deploy an LLM Endpoint: Follow the setup steps in the RunPod Provider Guide to deploy a compatible text generation endpoint on RunPod Serverless and get its Endpoint ID.
 - Set Environment Variables: Make sure 
RUNPOD_API_KEYandRUNPOD_ENDPOINT_IDare set. 
import getpass
import os
# Make sure environment variables are set (or pass them directly to RunPod)
if "RUNPOD_API_KEY" not in os.environ:
    os.environ["RUNPOD_API_KEY"] = getpass.getpass("Enter your RunPod API Key: ")
if "RUNPOD_ENDPOINT_ID" not in os.environ:
    os.environ["RUNPOD_ENDPOINT_ID"] = input("Enter your RunPod Endpoint ID: ")
Instantiation
Initialize the RunPod class. You can pass model-specific parameters via model_kwargs and configure polling behavior.
from langchain_runpod import RunPod
llm = RunPod(
    # runpod_endpoint_id can be passed here if not set in env
    model_kwargs={
        "max_new_tokens": 256,
        "temperature": 0.6,
        "top_k": 50,
        # Add other parameters supported by your endpoint handler
    },
    # Optional: Adjust polling
    # poll_interval=0.3,
    # max_polling_attempts=100
)
Invocation
Use the standard LangChain .invoke() and .ainvoke() methods to call the model. Streaming is also supported via .stream() and .astream() (simulated by polling the RunPod /stream endpoint).
prompt = "Write a tagline for an ice cream shop on the moon."
# Invoke (Sync)
try:
    response = llm.invoke(prompt)
    print("--- Sync Invoke Response ---")
    print(response)
except Exception as e:
    print(
        f"Error invoking LLM: {e}. Ensure endpoint ID/API key are correct and endpoint is active/compatible."
    )
# Stream (Sync, simulated via polling /stream)
print("\n--- Sync Stream Response ---")
try:
    for chunk in llm.stream(prompt):
        print(chunk, end="", flush=True)
    print()  # Newline
except Exception as e:
    print(
        f"\nError streaming LLM: {e}. Ensure endpoint handler supports streaming output format."
    )
Async Usage
# AInvoke (Async)
try:
    async_response = await llm.ainvoke(prompt)
    print("--- Async Invoke Response ---")
    print(async_response)
except Exception as e:
    print(f"Error invoking LLM asynchronously: {e}.")
# AStream (Async)
print("\n--- Async Stream Response ---")
try:
    async for chunk in llm.astream(prompt):
        print(chunk, end="", flush=True)
    print()  # Newline
except Exception as e:
    print(
        f"\nError streaming LLM asynchronously: {e}. Ensure endpoint handler supports streaming output format."
    )
Chaining
The LLM integrates seamlessly with LangChain Expression Language (LCEL) chains.
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
# Assumes 'llm' variable is instantiated from the 'Instantiation' cell
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
parser = StrOutputParser()
chain = prompt_template | llm | parser
try:
    chain_response = chain.invoke({"topic": "bears"})
    print("--- Chain Response ---")
    print(chain_response)
except Exception as e:
    print(f"Error running chain: {e}")
# Async chain
try:
    async_chain_response = await chain.ainvoke({"topic": "robots"})
    print("--- Async Chain Response ---")
    print(async_chain_response)
except Exception as e:
    print(f"Error running async chain: {e}")
Endpoint Considerations
- Input: The endpoint handler should expect the prompt string within 
{"input": {"prompt": "...", ...}}. - Output: The handler should return the generated text within the 
"output"key of the final status response (e.g.,{"output": "Generated text..."}or{"output": {"text": "..."}}). - Streaming: For simulated streaming via the 
/streamendpoint, the handler must populate the"stream"key in the status response with a list of chunk dictionaries, like[{"output": "token1"}, {"output": "token2"}]. 
API reference
For detailed documentation of the RunPod LLM class, parameters, and methods, refer to the source code or the generated API reference (if available).
Link to source code: https://github.com/runpod/langchain-runpod/blob/main/langchain_runpod/llms.py
Related
- LLM conceptual guide
 - LLM how-to guides